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Abstract

The aim of this document is to formulate a stable and efficiedticed order model (ROM) for theonlinear,
compressible three-dimensional (3D) Navier-Stokes égust The work summarized herein is an extension of ear-
lier work [3, 4, 10, 11, 12], initiated under the Sandia NatibLaboratories’ Laboratory Directed Research and
Development (LDRD) program to address reduced order maglétir coupled fluid/structure systems. Up to now,
only linearizedfluid equations have been considered. During the monthsraf J&eptember 2009, the following
contributions to the project goal of extending the ROM to-tiapar fluid equations were made by the author:

e Application of the “best” points interpolation proceduts| 16] to a non-linear Galerkin reduced order model
(ROM) for fluid flow.

o Implementation and testing of the said “best” points intéaion procedure on a model one-dimensional (1D)
convection-diffusion-reaction system of equations fanlautar non-adiabatic reactor [7] in MATLAB, includ-
ing in particular:

— Formulation and implementation of an optimization problenobtain the so-called “hierarchical” and
“best” interpolation points.

— Implementation of the 1D non-linear tubular reactor ROMhwiitterpolation using Fourier cosine and
Proper Orthogonal Decomposition (POD) bases.

— Generation of some numerical results for the non-lineanlartreactor ROM that illustrate the strengths
and weaknesses of the “best” points interpolation proadinen different orthogonal bases are employed
in the spatial discretization.

e Formulation of a stability-preserving symmetrized ROM floe compressiblenpn-linearn 3D Navier-Stokes
equations with appropriate boundary conditions (no-stig adiabatic wall), including a proof &b initio
satisfaction of the second law of thermodynamics, or ClasBiuhem inequality, for all numerical solutions, a
necessary condition for stability.

e Formulation of an efficient interpolation procedure to Harttie non-linear terms appearing in the Galerkin-
projected, symmetrized 3D compressible Navier-Stokeatsans with boundary conditions.

These theoretical and numerical results are presentedtail derein, and may ultimately be incorporated into a
journal article.
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1 Introduction

In earlier works, namely [3, 4, 10, 11, 12], a Galerkin/Pmo@ethogonal Decomposition (POD) Reduced Order
Model (ROM) for the three-dimensional (3D) linearized cargsible Euler equations was developed, and an extensive
mathematical analysis of the ROM with boundary treatmerg performed. The focus was on crucial numerical
properties of the ROM, namely the well-posedness of the staxally-reflecting (no-penetration) boundary condition
prescribed at the solid wall boundary, and the stabilitthefGalerkin projection step in the so-called “symmetry mne
product”. The analysis extended beyond the fluid ROM: stgtlwf the coupled fluid/structure system that arises when
one augments the fluid equations with equations for the aligphent of a plate over which the fluid is assumed to
flow was also considered [10]. These in depth studies oflgtabnd well-posedness led naturally to an analysis of
the ROM’s convergencd priori error estimates for the computed ROM solution relative &oGiD solution and the
exact analytical solution were derived in [11, 12]. To théhau's knowledge, these works were the first to address the
convergence properties of ROMs derived using the contispoojection approach.

Having formulated and analyzed a linear fluid reduced ordmaeth the goal now is to build a ROM for the non-linear
equations of fluid mechanics, namely the 3D compressibledi&@tokes equations. Several issues must be addressed
in the process of developing a reduced order model for trarseidable equations:

e The ROM must be stable.
e The ROM must be efficient.

As for their linearized analogs, stability of the Galerkirojection of the non-linear equations can be ensured by
defining a transformation that essentially symmetrizesdhequations. Following appropriate symmetrization, one
can use entropy estimates, namely the Clausius-Duhenpgritrequality, to shovab initio satisfaction of the second
law of thermodynamics by all numerical solutions to the ROMis is a necessary condition for stability, which we
will term “entropy-stability”.

The other issue that must be addressed is efficiency. Assdisdun [16] and illustrated herein, for general non-linear
partial differential equations (PDESs), the standard Gaeprojection method is no longer efficient in generating
reduced order models. This is because the integrals imglvie non-linear terms can no longer be precomputed, as
in the case for a set of linear equations, but must insteacktynputed at each time or Newton step. The key in
circumventing this difficulty is finding a way to handle thel&&in projection of the non-linear terms without having
to recomputed these projections (inner products). To dg the employ the so-called “best” points interpolation
technique [15, 16]. The basic idea is, given a non-polyngman-linear functionf (u), to represent it efficiently by
expanding the function itself linearly in an orthonormasisa

Having given some motivation for our equations and approaehnow give an outline of what is contained herein.
The “best” points interpolation procedure, adapted fro, [16], is outlined in Section 2 in the context of a one-
dimensional (1D) non-linear convection-diffusion-réastsystem of PDEs describing non-adiabatic flow through a
tubular reactor. We give some results for the tubular red@M with interpolation and a Fourier cosine basis (Section
2.5) and discuss some difficulties encountered when attegifit employ a POD basis on this problem (Section 2.6)
In Section 3, we proceed to the 3D compressible Navier-Steleations. A change of variables that ensures entropy-
stability of the Galerkin projection of the equationgh appropriate boundary treatment (no-slip and adiabatit) wal
is defined using entropy principles [5, 6, 9] (Section 3.4prAcedure to interpolate the non-linear terms that appear
in these projected equations is formulated in Sections3&-Conclusions are offered in Section 4. Section 5 is the
Appendix, which contains expressions and details not dediexplicitly in the body of this manuscript.



2 “Best” Points Interpolation Procedure of [15, 16]: lllustration on a 1D
Non-Linear Reduced Order Model of a Tubular Reactor [7]

To demonstrate and better understand the properties o™ points interpolation [15, 16] prior to formulating
its application to the full compressible 3D Navier-Stokgsa&ions, we first illustrate the general interpolation-pro
cedure on a simpler one-dimensional (1D) non-linear sysiEtwo coupled equations. Given this discussion, it is
straightforward to extend the interpolation to each of the-finear terms in the Navier-Stokes equations (Sectiéh 3.

2.1 Model 1D Nonlinear Convection-Diffusion-Reaction Syiem of Equations

The problem of interest is a model of a non-adiabatic tutn@lactor with a singlé& — B reaction [7]. In dimensionless
form, the governing equations, describing the consematioeactanf and energy for the nonadiabatic tubular reactor
with axial mixing, are:

d 1 0% 0 Y
d_¥ :ﬁgsg_d_g_Dyey ya , SE(O,l),TE(O,OO) (1)
% — 5P %2-B(6—60)+BDye v, sc(0,1),T € (0,m)
subject to boundary conditions
d
g_)é’ko = Pem(y_ 1)|$07 re (0700) 2)
%2leo =Pea(0—1)s0, T€(0,)
d
g_%‘ﬁl = 07 re (O, °°) (3)
B_S‘ﬁl :07 TG(0,00)
and initial condition
y| =0 = yina el'l':O = Glna Se (07 1) (4)

Here,y is the dimensionless concentrati¢his the dimensionless temperatusés the dimensionless axial distance,
T is the dimensionless timg, is the dimensionless heat transfer coefficigris the dimensionless activation energy,
D is the Damkohler numbeR is the dimensionless heat of reaction, &g andPg, are the Peclet numbers for mass
and heat transfer respectivélyt is convenient to write (1)—(4) in vector form, as follows

) U —A1ZY U B(u—up)-Cf(u), s€(0,1),T¢€ (0,0)
g_g‘s;o =AU-1)|_, T € (0,) )
#ls1 =0 1€ (0,2)
u = Upn, se (0,1)
where
_(Y _( Yo
= (3) w=(%) ®
_( Pay O (0 O . D (1
A:( X P%)’ B:(OB), c:(_BD), 1:(1) @
and

f(u)=ye b 8)

Classical numerical techniques [7] illustrate perioditugons which possess Hopf bifurcations. Figure 1 shows the
existence of stable oscillatory solutions as a functiorhef Damkohler numbdd whenPe,, = Pg, = 5, B = 0.50,
y=25,3 =2.5andfy = 1. In particular, one can see from this plot that there is hlstarbit bifurcates into a limit
cycle at the lower Hopf poinf) = 0.170.

LFor more on these parameters, the reader is referred to ttatibh” section of [7].
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Figure 1: Existence of stable oscillatory solutions to (hewPe, = Pa,=5,B=0.50,y=25,=25,6=1

2.2 Weak Formulation and Reduced Order Approximation of (1)
To formulate a reduced order approximation of the solutibfly begin by expanding in an orthonormal vectér
basis{ @M | € R2:

u(s,T) = um(s, 1) = Zam 9)

whereM is the size of the reduced basis. The basis functighsre chosen such that they are orthonormal in some
inner product-, ) (to be specified given the choice of basis), so {lgat@;) = J;j, the Dirac delta function.

To obtain the weak form of the equations (1), we project (5p e jt modetp in the(-,) inner product, perform an
|ntegrat|on by parts on the diffusion term, and substitbéetioundary condltlons (2) and (3) into the boundary integra
that arises. Doing so gives:
0 :( ~ A1 09U B(U—ug) +Cf(u), (p‘f)
]
- (ﬁ,ep,-) (A198, ) — (A %un. ) + (dg,w,“) (B(u-uo). @)+ (Cf(u).¢})
ey
= (3.0 + (A g e ) AT gt AT Bl o+ (52.01) + (Blu-uo).0) + (CTw). @) 10)
)
= (3e.¢)+ (AL, "")+A 1A 1lgo @)+ (ds,tp,-) (Bu—uo). @)+ (cf(u). o)
]
= (%7¢T)+<Ail%%> - ’5;0¢]+<%7‘p1)+<B(u7u0)7‘pljj)+<(:f(u)7‘pﬁj>
Substituting (9) into (10) and invoking orthonormality bitbasis functionégy,}M_; yields the following system of
ordinary differential equations (ODEs) for the time-degpent ROM coefficients;, j =1,...,M:

. og"
3 =—3hjamAt| g o “”st]—zh”blam[qozq( LACIRACES LT, S L
— S m-18mB [fo O (p“ds} + fo Buo- @jds— fo Cf(um)- @jds
Here,aj = (ij—arj

The last term in (11) contains the functidfuy ), which is non-linear iruy . In vector form, (11) can be written as:

| am = F—Law —N(aw)| (12)
where
ay=(a - aw) (13)

2Alternatively, one may expand eagland@ in their own scalar, orthonormal bases. This is in fact whaltine in Section 2.5, namely (46) and
(47). The result is a ROM ODE system involving a total & ROM coefficients.



1
Fo 1-(pi“(0)+/ Buo- @'ds (14)

1 00
Lij =¢E‘(0)¢i”(0)+'/0 [Al ;2 -%+i @' +Boj- ¢ (15)
! il U U

Ni(am)=/0 Cf (%%%)-%ds (16)

fori,j =1,...,M. In the simpler case whdPg, = Pay,, = Pe, (14) and (15) simplify to:

1
F= @O+ [q )2+ [ Beolgds an
Li = [g'(0) (¢ (0)]2+1[<A“(0)]2[<q”(02)]2 ) i

19[eH w2 JloH u u 18
fo {Pi[ [55] d[g)]s] _|_0[gs] d[g)]s] :|+ [d[?s] [(HU]1+%[QU]2] +B[%u]2[(ﬂu]2}ds (18)

where[(g“]k denotes th&" component ofp', for k= 1,2. For clarification of the notation in (16), for the functién
in (8):

M M M M M -1
f (zlamm) = f (zlaznm%]l, zla%[m%12) - (zlamm%] )exp - y( Zla%[@%]2> (19)

Since the vector stemming from the non-linear functi¢n) (8) depends oay, the inner products in (1&annotbe
pre-computed prior to time-integration of the ROM syster®)(s could (and would) be done in the case of linear
equations. This greatly reduces the efficiency of this ROM] motivates one to consider some alternative way to
handle the nonlinearity in (16), so that inner products imvg f (uyv ) need not be recomputed at each time step.

2.3 Solution for the Interpolation Points: “Best” Points vs. Hierarchical Points

In order to recover efficiency, let us develop the coefficfenttion approximation for the non-linear terms in (1) by
employing the “best” points interpolation of [15, 16]. Wetline the general procedure below.

Suppos& snapshots have been taken of the (vector-valued) primalavak field, atk different times:
SN ={E&K(9) _uh() 1<k<K} (20)

Here, theuﬁ(s) are vectors of state variables at grid point locations, eacitaining a single solution (snapshot) from
the numerical simulation.

Given this set of snapshots of the primal unknown figlcbne can construct the following set of snapshots of the
non-linear (scalar-valued) functidndefined in (8):

= {§/(9 = f(u(9) 1 1<k <K} (21)
We now define the best approximations of the elements in theshot set as:

fa(us() =arg  min [[f(U§(-) —wmll, 1<k<K (22)
wMespar{(pl ..... q}w}

where{qﬁ]}wbl is an orthonormal (in this case, scalar) basisffoDrthonormality of thelf,qfq implies that

M
=Y ag@n(s), 1<k<K (23)
m=



where
= (@f f(uk()), m=1..,M1<k<K (24)

The “best” interpolation points [15, 16}52’1”}'\"%1 are defined as the solution to the following optimizationiypeon:

() = S 1 BYSP5) ‘ﬂﬂH (25)

mingp gl)wPGQZk 1‘ )— ;
(Uf(s)), 1<m<M,1<k<K

..... fa(u
M (SR BEEP, ) =

Substituting (23) into (25) and invoking the orthonormgadéf the{qqn}nrbl, we obtain:

mms?p SMEsz ernzl(am Bm( 7-a§?/|p))2

26
Ml (SDBEEP. P = FuE(P), 1<m<M1<k<K (26)

i.e., the set of point$§1p}m:1 is determined to minimize the average error between thegalantsfy (-) and the best
approximationdy, (-). For implementational purposes, it is useful to rewrite) @6

. b
mingy. _,Wzﬁf 18— Bl - )2 o7
bp
En l%( )Bk 1M+m(517 ’SM)_f(uh( )) 1§m§M71§k§K
whereQ = MK and, for 1< m< M, 1<k <K,
arh(”n: g(kfl)Mer (28)

B = Bu—mim

The solution to the least-square optimization problem ¢&r) be found using the Levenberg-Marquardt (LM) algo-
rithmS. According to [16], the optimal solution is typically reahin less than fifteen iterations of the LM algorithm.

As noted in [15], the solutions to (27) are in general norguei as the objective function defining the “best” points is
usually non-convex. As a consequence, any iterative maatidgn algorithm used to solve (27) is very sensitive to the
initial guess.

One systematic approach that works well for selecting tht@airguess for (27) is to first compute the so-called
“hierarchical” interpolation poinfs {sm’}m:l and then use these as the initiaI guess in finding the “bedtitpoThe
hierarchical points are less expensive to construct thatitbst” pomts{sm m_1, as they are computed one at a time
by solving a sequence of univariate optimization problefiisey also exhibit the nice property th{aefl‘p,...,s%p} C
(&P, P Y form=1,...,M —1.

The solution procedure for the hierarchical points is ae¥at. To obtain the first hierarchical poirﬁ,p one computes
the minimizer of the following (univariate, or 1D) optimizan problem:

minslhpEQZE: (ak— BK(EP))?

29
ol (dPBKEP) = fUkEP), 1<k<K (29)

Then, forL = 2,...,M, one findss” and appends it to the sequen@®, ..., 3", } already computed, whes is
defined as the minimizer of

minsr:peg Shea Sra(af - Blk(ﬁrjp))z

Sha@ (SDBKER) = ful(dP), 1<m<L-11<k<K (30)
sk q' (§P)BKEP) = Fuk(EP), 1<k<K

3E.g., by employing thé sqnonl i n function in MATLAB's optimization toolbox.
4For more on the hierarchical points, the reader is refewegettion 2.2.3 of [15].



whereL=2,....M andor,k is as defined in (24).

As will be illustrated in Section 2.5, the objective funct®in (30) are, like the objective function in (27), in gerlera
non-convex, meaning they possess multiple local minimaweéver, as each minimization (30) is univariate, one
could, rather than using an iterative optimization progedo obtain local minima, compute the global minimizers
that solve (30). This idea is explored further in Section 2.5

2.4 Reduced Order Approximation to (1) with Interpolation

Given the “best” points foff, i.e., the solutions to (27) (or any set of interpolationrnts), call them{s,fn}wbl, itis
straight forward to apply the interpolation outlined in See 2.3 to the non-linear functioh(u) (8). We begin by
computing snapshots for the non-linear functioim (8). From these snapshots we compute the interpolatiortgo
{shIM_, following the approach outlined in Section 2.3 (see alsdiSe@ of [16]). Given{sh}M_; and{@h}V_,,

one obtains the so-called “cardinal functior{:spr';}wbl by solving the following linear system

PU(S) = Ay (9) (31)

where@|,(s) = (@] (S)..... 4 ()T andupy,(s) = (1 (S). ... Yy (5)T, andA;j = @' (z). Note that (31) is well-defined,
as the basis fof, like f itself, isscalar. Note also that the cardinal functions satigfy(z) = &;.

Given the interpolation point«@s%} and the cardinal function&prﬂ}, one can approximatkeas:

M

fu)~ fu(u) = Y fu(sh)yher (32)
m=1
so that
M M
fw=S f (z an(twﬁ(sin)) 74 (33)
m=1 n=1

The projection offy onto thel™ POD mode foru can be written in matrix/vector form. To do this, note thar;, &
general functiorfy (am) and forl = 1,...,M, we have that:

(@ .Clu(an) = (@' 5M1 CT (SIrandti(sh) ) uin)

: (34)
=St [jQ o' Cll’r;dQ] f (ZanlaMPﬁ(Srfn))
Remark that (34) is a matrix/vector product of the fa@™ (zh":lancp‘r{(s,;)) where
Gom= [ @h-Cyifde (35)
Q

for 1 <mn < M (so thatG € RM*M),

It follows that, with the interpolation procedure employeste, our ODE system for the ROM coefficients is not (12)
but rather

ay =F—Lay—Gf(Dfay) (36)

whereF andL are defined in (14) and (15) respectively, the entrieS aire given by (35), and

@is) .. @S]
D = L e RPWM (37)

Pisy) .- @S



To clarify the notation in (36), namely what is meant by a fiime f of a vector:

Sme1 ¢Lﬁ1(5{)am f (Zle (p“m(s{)am)

f(D'ay) = f eRM (38)

51 @ (S f (SN2 @h(sl)am)
wheref (ZMmzl Qs )am) is defined as in (19).

Essentially, in the interpolation procedure outlined hezeomputation of inner products (projection) of the noedr
terms at each time (or Newton) step is replaced by evaluafithre basis functions at the (pre-computed) interpolation
points (37). There is also a matrix inversion (31) involvedolving for the cardinal function&p&}'\"ml (31). This'is
the key difference between the ROM with interpolation (3&) he ROM without interpolation (12), and what makes
(36) far more efficient. The formulation and solution of th@RR with interpolation, including computation of the
“best” points and time-integration, is summarized in Aigfom 1 below.

Algorithm 1 Summary of ROM solution procedure of (1) with “best” poimsdrpolation
1. Compute a set df snapshots for the primal unknown fiald

SU={EN(s) =uk(s):1<k<K} (39)

2. Given this set of snapshots of the primal unknown figldompute the following set of snapshots of the non-linear
function f (8) from (39):
ST ={&l(9) = f(Uk(X) 1 1<k<K} (40)

3. Compute an orthonormal bai{iq;lf,..., (AL,} for f.

4. For the nonlinear functiof(u) in (8), apply (for instance) the Levenberg-Marquandt (LMjagithm to solve
(27) for the “best” points®P = {S:°, ... s}

5. Compute an orthonormal bagig;’, ..., g } for u.

6. Compute the matrik and vectof from (15) and (16) respectively.

7. ComputeA = A(sPP) at the best points, with:

Amn = @ (si) (41)
8. Compute the set of cardinal functio{‘q;lf,..., Lp,\f,,} by solvingtp,':,I = Aw,':,l.
9. Computes from .
Grm= / @' Cyldo (42)
Q
10. ComputeD from
Din = @ (z) (43)
11. Advance the following ODE system forward in time usingtandard time-integration scheme (e.g., Euler,

Runge-Kutta, etc.).
an+Lan—F+Gf(D'ay) =0 (44)

(Note that Newton’s method is not required if an explicitecte is employed.)

2.5 Some Numerical Results fof8) with a Fourier Cosine Reduced Basis

Since we are interested in formulatingzalerkin Reduced Order Model (ROM), we seek a basis that satisfies the
boundary conditions, namely (2) and (3). It turns out thabarker cosine basis, defined by

@n(s) =cogm(m—1)s), m=1,..M (45)



for 0 < s < 1 satisfies these boundary conditions. To generate sonmimpraty numerical results, we will therefore
employ a scalar Fourier cosine basis for epeimd8:

M

y(1,5) =~ ym(T,S) = z 7)cogm(m—1)s) (46)
=1
0(t,s) z a’(1)cogm(m—1)s) 47)

It is well-known that the Fourier cosine basis is orthondrimahe L, inner product; hence, we will take &s-) the
L»([0,1]) inner product. It follows that the coefficients in (46) and)4re given by
1
alh(T) = (Y(1,9),cog (M —1)s),(j0.1)) E/o y(1,s)cogmi(m— 1)s)ds (48)
and L
af%(r) = (6(1,5),cogm(M—1)s) ,(0,1)) E/O 6(t,s)cogni(m—1)s)ds (49)
respectively.

For concreteness and to generate some numerical resufig,thve properties in the equations (1) to those summarized
in Table 1. As one can infer from Figure 1, the solution exisihilimit cycle forD = 0.170. One of our goals is to see

Table 1: Fluid properties used in the numerical solutionldf (

Property Symbol | Value

Peclet number for heat transfer Pe, 5.00
Peclet number for mass transfer Pan 5.00
Dimensionless heat of reaction B 0.50
Dimensionless activation energy y 25.0
Dimensionless heat transfer coefficignt 2.50
Reference dimensionless temperatyre 6y 1.00
Damkohler number D 0.17

if the ROM solution with interpolation captures this limitae correctly.

The reduced order model for which we give numerical resulis generated by taking = 701 snapshots of the
solution fieldsy and 8, at time incrementdt = 0.25 apart. Numerical tests reveal that, to capture the colireit
cycle, a reduced basis Fourier cosine basis of size atléast modes is required. Below, we give some results for
M =6 andM = 10.

Tables 2 and 3 give the uniform, hierarchical and “best” ofor a basis of siz&1 = 6 andM = 10 respectively,
and the nonlinear function (8). The “best” points are corafduiy solving the optimization problem (27) using the
I sqnonl i n function in MATLAB's optimization toolbox, and with the hiarchical points as the initial guess. We
note that the objective function in (27) is not necessardpvex, so it may possess multiple local minima, which
implies that the “best” points are non-unique. The sameuis fior the objective function that defines the hierarchical
points. Since in this latter case of the hierarchical pgitits minimization is univariate, it is possible to obtaietair-
chical points that are global minima of the relevant objexfunction (third column of Tables 2 and 3). These points
can be quite different, as one can see by comparing colunmsai three of Tables 2 and 3. Indeed, the following
figure (Figure 2) shows that the objective function definimg $econd and third hierarchical points (and subsequent
hierarchical points) possesses multiple local minima. ®aresting, perhaps somewhat surprising, observatidrats t
it turns out not to matter which hierarchical points, thedlominimizers (column two of Tables 2 and 3) or the global
minimizers (column three of Tables 2 and 3) are used as ttialiguess to obtain the “best” points in column four of
these tables. Selectis§"’ (the uniform points) as the initial guess produces in gdrediifferent set of “best” points,
however.
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Figure 2: Objective functions defining the first three hiehacal pointss)®, s;° ands}”

The ROM ODE system resulting from the discretization (363 wevanced forward in time using a nonlinear fourth
order Runge-Kutta (RK-4) time integration scheme, withetistepAt = 103,

Figures 3 and 5 show the([0,1]) errors in the ROM solutions computed usiklg= 6 andM = 10 Fourier cosine
modes respectively with the interpolation outlined in 8tR.3. Errors are computed relative to the snapshots for
uniformly spaced interpolation points versus the “besihp Itis found that using the “best” points reduces thererr
by an order of magnitude in general. One can also see by camydéigures 3 and 5 that there is greater payoff in
using the “best” points for smalléd.

Figures 4 and 6 depict the limit cycle computed by the 6 and @8eTROMs (respectively) with “best” points interpo-
lation. There is a slight phase error whdn= 6 because so few modes are employed; nonetheless, it iditéddne
nonlinear behavior, namely the limit cycle, is capturedei#his excellent agreement between the ROM limit cycle and
the snapshot limit cycle fdvl = 10 (Figure 6): the non-linear behavior is captured with theect phase/magnitude.

Table 2: Uniform §4"f), hierarchical §') and “best” €P) points forM = 6
P

gunif | &P (local minimizer) | s"P (global minimizer)
0.0000 0.0291 0.2000 0.0572
0.2000 0.1202 0.2500 0.2465
0.4000 0.2211 0.4400 0.4203
0.6000 0.3252 0.7200 0.5909
0.8000 0.4311 0.7700 0.7578
1.0000 0.5378 0.7800 0.9211

Table 3: Uniform €M), hierarchical §'°) and “best” €P) points forM = 10
P

gunif | P (local minimizer) | s"P (global minimizer)
0.0000 0.0945 0.0072 0.0291
0.1111 0.1021 0.0400 0.1202
0.2222 0.2568 0.2000 0.2211
0.3333 0.3355 0.2500 0.3252
0.4444 0.4407 0.4200 0.4311
0.5556 0.5490 0.4400 0.5378
0.6667 0.6659 0.5000 0.6443
0.7778 0.7014 0.7700 0.7504
0.8889 0.8529 0.7800 0.8560
1.0000 0.9157 0.8700 0.9564

10



LZ([O,].]) Relative Error

Figure 3: Time history of.?(]0,1]) relative errors in 6 mode ROM solution with interpolatioringsuniform points
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2.6 Other Orthogonal Bases: Some Difficulties with a Proper @hogonal Decomposition

We end the discussion of the 1D non-linear tubular rector R@M some comments regarding the performance of the
ROM with a Proper Orthogonal Decomposition (POD) basideiad of a spectral basis like the Fourier cosine basis

Time History of Concentration y at s = 1 (M = 6, best points interpolation)
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Figure 4: Correct computation of limit cycles by a 6 mode RONhwhest” points interpolation

(POD) Basis for the Tubular Reactor ROM

(45). Let us first give a brief overview of POD.

Discussed in detail in Lumley [14] and Holmes al.[8], POD is a mathematical procedure that, given an enseafble
data, constructs a basis for that ensemble that is optinaaliell-defined sense. A POD basis of orb#ex < N is a set

of functions{e, : i =1,2,...,M} that is the “best” linear basis for describing the originademble. Mathematically,
POD seeks aM-dimensional 1 << N) subspace spanned by the §¢f} such that the projection of the difference
between the ensemble of snapshots (realizations) of thdigtmshu* and its projection onto the subspace is minimized
on average. Itis a well-known result [8, 12] that the solutio this minimization problem reduces to the eigenvalue

problem

BP =\
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Figure 6: Correct computation of limit cycles by a 10 mode R@lth “best” points interpolation

where
2P = (U(U @) (51)

and(-) denotes a time-averaging operator. The operatas self-adjoint and non-negative definite. If one further
assumes tha¥ is compact, then there exists a countable set of non-neggitienvalueg; with associated eigenfunc-
tions ¢;, orthonormal in the relevant inner product. In building aN®@ne is interested in truncating the POD basis
and retaining only th& << N most energetic modes. It can be shown [8, 14] that the ddtei§enfunctions, or POD
modes{@, :i =1,2,...,M} is optimal in the sense that it describes more energy (oragegiof the ensemble than
any other linear basis of the same dimenswbnThe compression of the ensemble energy into a minimum nuafbe
modes is what makes the POD basis attractive for reducedmatgeling. We note the POD bagig, :i=1,2,... .M}

just described imot complete. It is, however, complete in an average senseistﬁ#uk =3 (uk, ?)9, H> =0 for
M =N.

Numerical experiments with a POD basis suggest that POD isoa ghoice of ROM basis for this problem. In
particular, it is observed that:
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e The method of snapshots appears to break down when compatieg oM greater than approximately 30 for
theK = 700 snapshots of the field Non-orthogonal modes begin to appear.

e The Fourier basis seems to be much more efficient at repiregéhé nonlinear functiorfi(u) (8) than the POD
basis.

The second pointis likely the primary cause of the troubldeled, POD is optimal in representimfut not necessarily
f(u) so its inadequacy is not entirely surprising. The exceltestlts with a Fourier basis can likely be attributed to
the smoothness of this basis, as well as the fact that the éggeatives of the basis functions are available.

We emphasize that the inadequacy of POD for the tubulargepcbblem (1), revealed by the numerical implemen-
tation and testing of the Galerkin POD ROM, is not a setbackHe non-linear reduced order modeling approach
discussed here, as our focus is on the interpolation mettuidhe specific basis used in the discretization.

3 An Entropy-Stable and Efficient Reduced Order Model (ROM) for the 3D
Compressible Navier-Stokes Equations

Having formulated the “best” points interpolation of [15]1n the context of a non-linear Galerkin reduced order
model, and demonstrated its application to a simple 1D et convection-diffusion-reaction system (Section 2),
let us now turn our attention to the equations of interesmelg the three-dimensional (3D) compressible Navier-
Stokes equations. Following a discussion of the fluid vdemithe governing equations and the boundary conditions
(Section 3.1), we exhibit an entropy-stable inner prodoctthe Galerkin projection step (Sections 3.2—-3.4), and
formulate the “best” points interpolation procedure met in Section 2.3 as it would be used to handle the non-linear
terms present in these equations (Sections 3.5-3.6).

3.1 Notation and Governing Equations

In terms of the so-called conservation variallgghe Navier-Stokes equations can be writteh(agglecting forces)

[9]:

Uy +Fij = FY; +Fl (52)
where, in three-dimensions (3D):
Uz p
U, puL
U=| Uz | =] pu (53)
Ug pus
Us pe
0 0 0
O Tyj 0
Fi=uU+p| & |, F=| w |, F=| 0 (54)
O T3 0
Ui Tijuj —qi

fori = 1,2,3. Fj is known as the convective or Euler flux! is the viscous flux, an8/ is the heat flux. The variables
and parameters appearing in (53)—(54) are defined in TaAlbelspecific heats are assumed to be positive constants.
Moreover, we require that

p >0, A+§u20, k>0 (55)

(52) is the conservative form of the 3D compressible Na@igrkes equations. These equations can also be written in
non-conservative form as
Ut+AiU; = (KijU ) (56)

9Fy
X1

(i}

5Note that we are employing the so-called Einstein notatioimplied summation on repeated indices, so that, Big= i

dFy
+ 52+
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Table 4: Fluid variables

Variable Physical Meaning Expression
P fluid density
Ui fluid velocity in theit" direction
Gij Kronecker delta Gj =1ifi = j, §j = 0 otherwise
e total energy density e=1+3u?
I internal energy density 1=c0
6 absolute temperature
Cv specific heat at constant volume
Cp specific heat at constant pressure
y ratio of specific heats y=Cp/Cy
p fluid pressure p=(y—1)pi
Tjj viscous stress Tij = AUk + (Ui j+Uji)
AU viscosity coefficients
di heat flux 0 = —K0;
K conductivity
n thermodynamic entropy density per unit mass
S nondimensional entropy s=n/cy=In(pp ")+ const [Gibbs’ equation]
t time
X position vector in Cartesian coordinates xT = (X1,X2,X3)

whereA; = Aj(U), Kjj =Kjj (U) andKi*} = Kihj (U) are defined by

Fii=FiuUi=AU; (57)
F =K{jU (58)
Fl=KlU; (59)
and
Kij EKYJ--FKH (60)

Let us for now neglect the far-field boundary conditions,teat tve consider only the solid wall boundary conditions,
denoting the solid wall boundary of the doma&irby dQw = dQ. The relevant boundary conditions at the solid wall
are:

no slip BC: u=0, ondQw (61)
adiabaticwall BC: 068-n=0, ondQw

This document (Section 3.4) also includes a discussioneohtiipenetration boundary condition:
no-penetration BC: u-n=0, ondQw (62)

which it may be desirable to implement, for instance, if thsib functions employed do not satisfy the no-slip condi-
tion at the wall.

3.2 Clausius-Duhem Inequality, Entropy Variables and Symnetrization of the Navier-Stokes
Equations

In designing a Galerkin Reduced Order Model (ROM) for the poessible Navier Stokes equations (52), we are
interested in defining an inner product in which the Galeptjection will be stable. As discussed in [5, 9], stability
can be ensured by the energy method.

14



3.2.1 Clausius-Duhem Inequality

For the full (non-linear) Euler or Navier-Stokes equatiothe energy method is closely tied to the second law of
thermodynamics, or the Clausius-Duhem inequality, namely

d s Cooqgin
g do > _/ RILPT 63
dt /Qpn - JoQw 6 ( )

wheren is the thermodynamic entropy density per unit mass (Tablé68) essentially states that the entropy of the
system is non-decreasing. For (52), energy estimateseadtisfaction of the entropy inequality (63), imply tha th
semi-discrete solutions possess stability propertiestakhose of the exact solutions of the governing equatisr]|
We will call solutions that satisfy (63) “entropy-stablé@ur aim here is to develop a transformation (symmetrization
and define an inner product such that the Clausius-Duhermiiiég)(63) is necessarily satisfied for the Galerkin ROM
we will build for the compressible Navier-Stokes equati{B®) with boundary conditions (61).

3.2.2 Entropy Variables

To develop a Clausius-Duhem inequality-preserving Galepkojection of the equations (56), let us introduce a
change of variabled — V:

U=U(V) (64)
We will refer toV as the “entropy variables”. In terms of the entropy variablethe equations of interest (56) are:
AoVi+AiV,i—(KijV,)i=0 (65)

wheré
Ap=Uy (66)
A =AiAg (67)
Kij =KijAo (68)

It is well-known that the matriced; in (56) are non-symmetric. However, it is also well-knowatthll linear com-
binations of theA; possess real eigenvalues and a complete set of eigenyentasingJ ; + AjU; = 0 constitutes a
hyperbolic system of conservation laws. We seek a changarahles (64) such that:

1. The matriceé\o andA; are symmetric, and

2. The matrix 5 - 5

K1 Kz Kig

K21 K22 Kzs (69)
K31 K32 Kss

Py
Il

is symmetric positive semi-definite.

If the transformation (64) is defined such that these prageltold, the resulting system in the entropy variables will
be a symmetric hyperbolic system.

3.2.3 Generalized Entropy Functions and Entropy Fluxes

Following the symmetrization approaches of [5, 9], we wéfide the change of variables (64) with the help of so-
called generalized entropy functions. A generalized guytfonctionH = H (U) is by definition a function that satisfies
the following two conditions [9]:

1. H is conveX.

6The reader is referred to Section 5.1 of the Appendix forieit@xpressions of the symmetrized matrices (66)—(68).
"The convexity oH is equivalent to the positive-definitenessAqf, sinceAa1 =Vuyu=Hyu.
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2. There exist scalar-valued function= c;(U), i = 1,2,3, referred to as entropy fluxes, such that

HuAi = aiy (70)

The following theorems, quoted from [6], delineate thetietaship between symmetric hyperbolic systems and gen-
eralized entropy functions, and will be employed in our syetnmation of the equations (57):

Theorem 3.2.1 (Mock). A hyperbolic system of conservation laws possessing a gkest entropy function becomes
symmetric under the change of variables
VT =Hy (71)

Theorem 3.2.2 (Godunov).If a hyperbolic system can be symmetrized by introducingaagé of variables, then a
generalized entropy function and corresponding entropyeffLexist for this system.

3.2.4 Entropy Flux for the Compressible Navier-Stokes Equtons (52)

It is shown in [6, 9] that for the compressible Navier-Stokgsiations (56), appropriate choices for the entropy flux
and entropy function are
o =Hu, H=-pg(s)=-ps (72)

respectively. Hersis the non-dimensional entropss= n /¢y (Table 4), which satisfies the well-known Gibbs equation
s=In(pp~")+const.

With the choice of affine entropy flux (72), the transformatib— V (71) is given by

—Us+pi(y+1-59)

1 Uz
p Ug
—U;
where 1
U;
1
p1=Us— 5 (U7 +U5 +U3) (75)
1
The inverse mappiny — U is given by
—Vs
\%)
U=npl V3 (76)
Vs
1- e (V5 +V))
where Y1)
_[y=117" =S
-ty el )
1
s:y—V1+W(V22+V32+V42) (78)
5
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3.2.5 Homogeneous vs. Inhomogeneous Entropy Fluxes

We conclude the discussion by calling attention to the ta&t the affine entropy flux (72) isothomogeneous. To be
called a homogeneous flux function [5],must be selected such that:

UyV =pU (79)
FivV =BF; (80)

for somep € R, whereF; = F; (V(V)) (the Euler fluxes in the transformed entropy variables). W@ in [6], the
viscousterms in the Navier-Stokes equations will be symmetric aositiye definite after symmetrization for any
memberH = —pg(s) of Harten’s generalized entropy functions, in particutee following family of exponential
homogeneouitux functions:

h(s) =K =K(pp™Y), K,k#0 (81)

However, as proven in Section 5.5 of the Appendix, if the Hieat term F{Ti is present in the equations (52), the
only way for the augmented heat flux matrix (69) to remain fpasisemi-definite is ifH is affine ins, i.e., if H
has the form (72). It is for this reason that we have selediedinbomogeneousntropy flux function (72) for the
compressible Navier-Stokes equations (52) instead ohtimogeneouiux function (81). The latter could be used
for the Euler equations or the Navier-Stokes equations N‘\ﬂlthln our case, sincE{]i # 0, we select (72) to obtain the
entropy-stability result in Theorem 3.3.1.

3.3 Entropy Stable Galerkin Projection of the Symmetrized mpressible Navier-Stokes
Equations (65) with Boundary Conditions (61)

Let us now examine the stability of the Galerkin projectiothieL,(Q) inner product of the symmetrized compressible
Navier-Stokes equations (65) with boundary conditiong.(8Me will say that the Galerkin projection is “entropy-
stable” if it satisfies the Clausius-Duhem entropy inedqudl63), or the second law of thermodynamics. Per the
discussion in [5, 9], we aim to show that the change of vagesr3) is such that when the transformed equations (65)
are projected onto a POD mode, the Clausius-Duhem inegisli¢specteab initio for all numerical solutions.

Assume the entropy variables have been expanded in a vextis{ip, }M ; € R>:

M
VD) 2 VM) = S am(t) @n(X) (82)
m=1

where thean(t) are the modal amplitudes (or ROM coefficients) to be solved&esume the basis is orthonormal in
theL2(Q) inner product, so thelp;, @;) = §; foralli,j =1,...,M.

Theorem 3.3.1.Consider the symmetrized compressible 3D Navier-Stokegieqs(65)in an open bounded domain
Q c R3, with the no-slip and adiabatic wall boundary conditi@g1) on the boundargQyy. Define the transformation
U — V given by the entropy flu§’2), so that the relationship betwed&hand the entropy variable¥ is (73). Then
the Galerkin projection onto a POD modg of (65) with boundary condition¢61) in the L2(Q) inner product is
“entropy stable” (i.e.., satisfies the entropy estimés&)) if the POD modegp; satisfy the no-slip condition o#Qw,
ie., if

=¢=¢'=0 (83)

for j = 1,...,M whereg denotes thet component ofp; fori=1,...,5.

Proof. Let us work out the projection of each of the terms at (65), ana time. Premultiplying (65) by'T and
integrating oveR), we have:
JoVTAQVdQ = [(HyuUyVdQ
= [oHuU.dQ (84)
= [oH:dQ
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Note that

VTA; = (HyA)Ao = o, uUy = Giy (85)
Now, for the convection term:
/VTAI AR I / o.v dQ / (Hup) 1dQ (86)
’ H/—/
aij
Moving on to the diffusion term:
JoVT(KijV j).dQ :-j‘QvTR.Jv dQ+fQ(vTR.,v ).1dQ

:—ij KijV jdQ+ [5q, VTKijV jdS

= — [oVIKijV jdQ+ f50,, VTKijniAeV ;dS

= — [oViKijV dQ—i—ngWVT(KV—i-Kh)n UvV ;dS (87)
= — [oVIKijV dQ+deWVT(KV+Kh)nU ds

= — JoVIKijV,jdQ+ fyo, VT(FV+Fh)n.dS

= — JoVIKijV jdQ+ [5q, VIFMdS+ £ [5q, %tdS

The integrand in the first boundary integral in (87) becoraétey the application of the no-slip condition (see (172))

0 0
(=V5Viy1,1+Vig1Vs1 —VeVai+VoVs)n; RVIVINRRRVIRVE m
[Fini]"= \% (=V8Vit124+Vig1Vs2 —VsV3i+VaVsi)ni | +A > |+1,\|/‘2|' 175 n, (88)
51 (=VsVit1,3+Vip1Vs3 —VsVai+VaVs)ni 5 n3
0 0

Letg; € R® be a POD mode for the primal unknown field in the entropy vaesly, and assume thae; satisfies the
no-slip condition (e.g., assunqé, qoj3, (,oj4 on dQw is zero-ed out posterioriin the implementation to ensure that it
satisfies no-slip). Then, it follows from (88) th[ap)lT FVni]" = 0 necessarily for al], meaningV T F/nj]"S = 0.

Putting (84), (86) and (87) together, we obtain:

L Ia(em)dQ = foaVIRV jd0 + 2 fo [~(Hu); - ()] do

:chVV‘TiIZi,-V’J-dQJr%me —H uin; —(%) n| ds
’ ~~
=0 (by no-slip BC) (89)
~ qin;
= JooVIRGV jd@~ 2 o, (%51)  ds
=0 (by adiabatic wall BC)
>0
or d
a / pndQ >0 (90)
dt Jo
which implies non-decreasing entropy (63), and therefateoy-stability of the Galerkin projection. O

3.4 Weak Formulation and Implementation of Boundary Conditions (61) and (62)

Let us now formulate a weak implementation of the boundand@mns (61), using the viscous fluxes to implement
the no-slip condition. We also formulate the implementatbthe no-penetration boundary condition (62) using the
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convection term, which may be required for the numericseflisis functiong,, do not satisfy the no-slip condition
ondQw. Projecting (56) onto the modg,,, gives:

Jo @AV Q= — fo @AV, idQ + Jo @R([K} + KAV j)dQ
= Jo(@LA)VAQ — [ @5KijV jdQ
- /mw oL [AiniV]"PdS /mw LRy niv,j]“Sds+/dQW gLRnnV s (91)
=’ =1 =lad

From Sections 5.2-5.4 of the Appendix, we have that:

0
) —pisny
[AinV]"P= | —pismp (92)
—pisms
0
0 0
(=VeVii11+VitaVs 1 — VeVai +VoVs )N VeVr i 4\ _ m
} , , , , - ViV
[KijniV " = \% (—VeVii12+Vii1Ve2 — VaVai+VaVsni | +A | — |+1,\|/2 U (93)
5| (—VsVir13+Vip1Vs3 —VeVai+VaVs))n; 5 N3
0 0
and .
[KiiniV j]2¢=0 (94)
Denoting
(@l = @M+ g2 + dns (95)

we obtain the following expressions for the boundary ireégin (91) (Table 5).

Table 5: Boundary integrals arising from the weak impleragah of the BCs (61)

Boundary Integral Expression
‘ _1 1Y/0-D) —Y+V1— g (VEHVEHVE)
I Joaw [e] e I Y vk g (E 4 VE Vs
V5Vii1,i—Vit1Vs;i
I Joow [—V%(Vs\/m,j —~Vi+1Ve,j +VaVj i1 — VjpaVe @™t — A (%) [fnn]n] ds
|ad

Note that if the POD modeg,,, satisfy the no-slip condition 08Qy, i.e., @& = @& = ¢, = 0, then the integralfy’
and|®in Table 5 are identically Oy’ = 175 = 0.

The non-linearity in the full Navier-Stokes equations (E2n the advection term, or Euler fluxés. Note, however,
that the diffusive terms in the entropy variable analog &)(®amely (65), are also non-linear, due to the fact that
the symmetrizing matrix (JacobiaA)y = Uy is a function ofV. Hence,all the symmetrized matrices, namef\y
andRij will be non-linear inV; in the ROM with boundary conditions, the boundary integ@hable 5) will contain
non-linearities as well if the basis functions do not sgtish-slip. Moreover, sincéy = Ag(V), while one has that
(@;, ;) = &; for any two basis functiong;, @;,

(@, A0®;) # & (96)

A consequence of (96) is a mass matrix will appear in the shstirete ROM to be advanced forward in time (see
e.g., (130)).

Introducing the shorthand, fafy,V, € RS:

(V1,V2) = / VIV2dQ, <V1,V2>aQWE/ ViVods (97)
JQ IQw
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the governing equations (65) projected onto a POD nggare

(@ AoV 1) — (@A) i V) + (@i, KijV ) — (@ [AiNV]™) gy, + (@, [KY NV 100,

_ine . s
+ (@, [KENV 2% 90, =0

=lad=0

(98)

or (settingl,q = 0; see Table 5)

(@ AoV 1) — (@i s AiV) — (@ AiiV) + (@i, Kij V) — (@, [AINV]™) g0, + (@, [KY MV 1™ 90, =0 (99)

—|nP —|hs
—'m m

Substituting the modal expansion (82) into (99), one olstain

SN (@ [AolM@r) 80 = (@i [AiIMVM) + (@, [ALIINVM) = (@i, KijIMVML) + (@, ANV 00, (100)
(@ RYOV 00

where[Aglm = Ao(Vm) = Ao (Eanlan(t)q)n) and similarly for the other matrices wittM” subscripts in (100).

All the terms in the projected equations (99) contain noedritie$, including the term on the left-hand side. We will
denote the non-linear terms as follows:

[fo(VM)ln=[AcM@,, n=1,..M (101)
fi(Vm) = [AilmVm, =123 (102)
fa(Vum) = [AiilmVm (103)
fi(Vm) = [KijlmVmj, 1=5,6,7 (104)
fa(Vm) = [AinV]p (105)
fo(Vim) = [KYmiV ;I (106)

Then (100) takes the form (foe=1,2,3)

S (@ oVl an = (@i fi(Vm)) + (@ Fa(V)) — (@i fira(Vim)) + (@ T (V) aaw (107)
—(@m,fo(VM))aaw

fort € (0, T] subject to the initial conditioV (0,x) = Vo(X). Once discretized in time, (107) will yield a non-linear

discrete system of equations that can be advanced in timg asiexplicit time integration scheme, or by combining an
implicit scheme with Newton’s method at each time step. No&t, unlike in the case of a ROM for linear equations,
the left-hand side of (107) will contain a mass matrix thdt méed to be inverted during the time-integration of the
ROM.

3.5 “Best Points” Interpolation for Non-Linear Projected Terms

As in the 1D tubular reactor problem of Section 2.3, applytimgstandard Galerkin reduced-order model to (107) is
inefficient due to the presence of the non-linear terms. Towver efficiency, let us develop the coefficient function
approximation (Section 2.3) to the non-linear terms in #xigression.

As outlined in Algorithm 1, one begins by computing snapskotor the primal unknown field/, atK different times
t:
AV ={&/(x) = VK(X) 1 1<k <K} (108)

8As discussed in Section 3.4, if the POD mogggsatisfy the no-slip condition @Qyy the boundary integralg) and!;P vanish.
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Given this set of snapshots of the flow field, one then compmrtapshots for each of the non-linear functions in (101)
- (106):
fon—{zfo (X) = [fo(VKX)n:1<k<K}, n=1,..M (109)

= (EV () =fj(VEX) :1<k<K}, j=1,.9 (110)

From these snapshots, one solves for the “best” interpolgtbints for each of the non-linear functions (101)—(106),
denoted here by:

{z M . “pest’ (or any) interpolation points fdfg]n,n = 1,...,M (111)

{ZM_, - “best” (or any) interpolation points fdf, j = 1,...,9 (112)
following the approach outlined above in Section 2.3 andhéjournal article [16].

We note that the main difference between the non-lineattiomgthat appear in the projected Navier-Stokes equations
(107) and the projected equations for the tubular reactbyilthat the non-linear functions in the former are vector-
valued. However, in practice, this poses no difficulty far folution procedure of Section 2.3, as this exact procedure
can be applied to eadomponenodf each of the non-linear vector-valued function in (101B4). For concreteness, let
fje R® be any of the vector-valued functions in (101)—(106), amd}lelenote thé'" component ofj for j=0,1...,9,
i=1,..5 Then, each of the components of each of the funcfipoan be expanded in an orthonormal (scalar) basis

as, denoted here bﬁmn‘ m—1- Now, we can define the best approximations of the elemenik®isnapshot set as:
| |
Z a qqn 1<k<K (113)

where ‘
fi .
anl = (@, fI(VE(), m=1,..M1<k<K (114)

fori=1,...,5,]=0,1,...,9. Now, the interpolation points for each component of eawflinear funct|0n{zm}m:1 €
Q c R3 are defined as the solution to the following optimizationkpem:
2

fl

. - fi
MiNz; ... zyeQ [fJI]K/I() - Zmzlﬁmj (Zlv""ZM)q}’ﬂJ

o ¥ (115)
ZnM:lq‘h (Zm)ﬁnj(zlv---,ZM): fi(zm), 1<m<M
Substituting (113) into (115) and invoking the orthonorityadf the {(pn IM_, we obtain:
fi i
mlnzl ZM EQ anl(am - Bm (217 ZM))Z (116)

S 1% (Zm)ﬁn (z1,--,2m) = fl(zm), 1<mM<M

i.e., the set of pomts{zm} m_1 Is determined to minimize the average error between thepolants[f'] (-) and
the best apprommaﬂor{é'] (-). Comparing the optimization problems (116) and (25), onesee that these are

identical, with the general functiofiin (25) replaced bny!, thei™ component ofj, one of the non-linear functions
in (101)—(106), and so we refer the reader to Section 2.3 éail$ of the solution procedure for the “best” (or,
hierarchical, if desired) mterpolatlon points.

Given a set of interpolation pomm] for i, one can define the cardinal funct|{>qvm } for f' by

o) = ATl ) (117)
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Wherecp,f,i,( )*(qolfi( X), .. ,q}w( )) andtpM( )= (Lplfi( X), .. ,L[l,\f,:( )T, andArf,in fi( fi) As before, the (scalar)

cardinal funcUons,Um satlsfytpm (z,: ) = dmn- Given the interpolation p0|ntf§zrn m_1 and cardinal functlon$tpm}
(117), one can approximate tH& componenti(= 1, ...,5) of fj (101) — (106) by

M i i
V)~ [V = 3 [n(V@")gm’" € B, n=1,...M (118)
m=1
. ) M [ i
BV~ V) = 3 H(VEh)gm R, i=1..,5j=1..9 (119)
m=1

3.6 Reduced Order Approximation to the Symmetrized Compresible Navier-Stokes Equa-
tions with Interpolation

Our reduced-order approximation, (107) but now with intdagion, is obtained from (118) and (119) and takes the
following form

Z q’m’ fO = (q’m,i’fi (aM)) + (¢maf4(aM)) - (¢m,i7fi+4(aM)) - <¢m7f8(aM)>5QW - <¢m7f9(aM)>5QW
i (120)
form=1,..,M, wherea], = (a,...,am) € RM and
. ) M m
[faln ~ [T5(am)]n = zl <Z Bun(t) @i (20" )) fhx), n=1,..M (121)
. . M m fi
fi = fj(am) = zlf} <zam )Pm(Z )) l.Um( ), 1=1,...9 (122)

It is convenient to write (120) in matrix/vector form, as vidbe required for numerical implementation. To do this,
note that, for tha'l, i =1,...,5 component of j(am) and forl = 1,...,M, we have that (implied summation on the
i=1,...,5 and lettingy denote theé' component ofp,):

(@.fi(aw) = (d.f(@w) -
= <<A22Mm fl (zh”lanqon(zln})) wﬁi)
= od {Z%{f} (zn 180, (2 )> } wm} (123)
= Sha [ /Q (qqlwrﬁl,qqzwrﬁz,qq3wrﬁs,<n4wr2‘4,cn5wrﬁs)dg] f; <§1an¢n(zﬁg)>

€R1X5 cR5x1

where, to further clarify the notation:

1 m f
fj anlanq’n(zf‘l% )
£2
fj2 Zanl an‘pn(zﬂ{)

N 3

fi fs
fi <Z antpn(zrﬁ)> =| f? M an@,(znh) €R® (124)

n=1

4
fj4 Zanl an‘pn(zfﬁ )

I
fjs zngl an‘pn(zﬂ{ )



(123) is a matrix/vector product of the for@fif;(Dfiay) where

f] Yo ffog B g4 i 5 T 1x5
Gy s(m-1)15m = /Q(Gq Yol U @, ¢ Ul @Y )Q € R (125)
for 1 <l,m< M (so thatG'i € RM**M) and
¢1(2) PN (z))
D = : : € ROMXN (126)
f; f;
¢1(zy) P (2)
By ¢pm(zaj) we mean
£l
@%(anz)
Az
on@) = | @) |eRS 1<mn<wm (127)
4
ﬂ%(znjs)
It
@z )

fj(Dfiay) € R%M is defined analogously to (38).
Similarly, turning one’s attention to the left-hand sidg®20) (with implied summation on=1,...,5 as in (123)):
S folanla = Sy (df, [fo(am)lk) a | |
=5 (0 1 (32 s a2 ], )
=38 d {Zha [ (SN san@a(zn™))] ymd™ } o

" 1 2 3 4 5
_sm Jsw {/Q((ler[goyqzwgolk7(ﬁawgoJk7q4w¥olk7qswgo}k)dg}

i [folk :
fo ( S oo ))} A
n=1 K

cR1x5 cR5x1
(128)
The entries of the mass matrix can be “read off” from (128inaky
M zmy ¢ = Gl [foi (D[f"h‘am) cRM (129)
for 1 < k < M, whereGlfolk andDIfolk are defined analogously to (125) and (126) respectively.
With this notation in place, (120) can be written in matr¢tor form as
May = Gfifi(Dfiay ) + G*4(D"au) — G'i+4fi, 4(Df+4ay ) — G™fg(Day ) — G'fo(D'ay) (130)

(implied summation on= 1, 2,3). (130) can be integrated in time using a standard expilieé-integration scheme, or
an implicit time-integration scheme, with the applicatafrNewton’s method at each time step. We emphasize again
that the upshot of formulating the ROWith interpolation is all the inner-products are contained im@Y matrices
(125), which can be pre-computed prior to time integratibarmd/or application of Newton’s method to the ROM
ODE system (130). Similarly, the interpolated mass mattBQ) can also be pre-computed. The time-integration of
the ROM ODE system (130) will require inversion of this mathut since the number of modiswill in general be
quite small, the relative cost of this inversion is minigcul

4 Conclusions and Future Work

The present work has focused on techniques for buildingopptstable and reduced order models (ROMs) governed
by non-linear partial differential equations (PDES) in dlumechanics. It turns out that one can bypass the need to
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recompute inner products involving the non-linear termeaath time or Newton step, thereby reducing the on-line
computational complexity of the ROM, by handling the noaéinties using a “best” points interpolation algorithm
[15, 16].

The said “best” points interpolation approach was testec anodel one-dimensional (1D) convection-diffusion-
reaction system of equations representing the flow througbraadiabatic tubular reactor [7]. Numerical tests on
this simple non-linear problem revealed that the interfiateprocedure successfully captures the non-linear hehav
(e.g., limit cycles) of the solution when a spectral baseniployed. It also revealed some shortcomings of the Proper
Orthogonal Decomposition (POD) basis that one may wish &oreme further in future work.

Following this preliminary testing of the interpolatiorttention was turned to the key equations in fluid dynamics,
namely the compressible three-dimensional (3D) Naviek&t equations. The nonlinearity present in these equsation
presents a challenge for developing provably stable ROMss dhallenge was addressed with the help of a transfor-
mation that effectively symmetrizes these equationsitegi a projection technique that leads to a model that obeys
the second law of thermodynamics: non-decreasing entrbftyesolution. Following a proof of the entropy-stability
of the ROM solution with appropriate boundary condition gdiicient “best” points interpolation procedure was for-
mulated to handle the non-linear terms in the symmetrizetgaons. Given this formulation, it should be straight
forward to implement the Navier-Stokes ROM with the progbsgerpolation, and to test the performance of this
solution under different choices of bases. Future work imilblve implementation and testing of the Navier-Stokes
reduced order model formulated herein.

5 Appendix

5.1 Euler Fluxes in the Entropy Variables and Symmetrized Mdrices

To simplify the notation, let us introduce the following iables:

y=y—1, ki=2; (VFHVE+V]), ke=ki—v,

ks=K -2k +y, k=k—Y, ks = k5 — y(ki + ko),

c1= Ws— V2, d; = —VoV3, e = VoVs, (131)
o= W5 — V3, d2 = —VoVy, & = V3Vs,

C3 = Ws— V2, dz = —VaVy, €3 = V4Vs.

In the entropy variable¥, the Euler fluxes (V) are given by:

el & es
C1 d; d>
| | |
Fi(V) = \pT h |, Fav)= \pT o |, Fav)= \pT ds (132)
5 d> 5 d; 5 C3
I(2\/2 k2V3 k2V4

The symmetrizing matrid and its inverse are given by

V¢ e e & Vs(l-k)
ol C1 dl d2 V2|(2

Ag= U,V = W C2 d3 V3|(2 (133)
5 C3 V4|(2
symm. —ks

9This section is repeated here from the Appendix of [9] to nthledocument self-contained.
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and

At=Vy=—-——+

The Jacobians of the Euler fluxes are:

As=Fay=—>s

We

—(C3+2N5)Va  Cako+ W2

K+y  kVo kiV3 k1Va
(57 S
Y, 3 V5 —u3
pPIVs V42 _ V5
symm.
erVs C1Vs. diVs  daVs
—(C1+2M5)Vo —C1V3  —C1Vy
— CzV2 —d 1V4
—C3Vo
symm.
&Vs  diVs CoVs d3Vs
—C1V3 —Co\Vo —d 1V4
—(C2+2W5)Vz  —CVy
—C3V3
symm.
&Vs  doVs7d3Vs  C3Vs koes
—C1Vy — d2V3 —C3V2
—CoVy —C3V3
symm.

The velocity and temperature can be written in the entropiabiges as:

u(V) = —Viv—zl, i—123

1

6(V):—CV—V5

The gradients of the viscous and heat fluxes are given by:

wherePr = ucp/k is the Prandtl number.

o —VeViygj+VinaVs
Uij = V2
5

KGi—W 1

£ il YA
T prvg ™

(kl =+ 1)V5
€1
€

e
Vg

koer

Crko + sz

Kad1
Kad2
ksV>

koo
Kad1

Coko + W32

kad3
KsV3

Kad>
kad3

ksV4

Finally, the symmetrized viscous and heat flux matrléqE R}’j + Rf} are given by:

0 0

L]0 —(y—2u)VZ
I211 -y 0 0
V2| o 0

0 (A+2u)e

8 1

Kqipo—= —

12 V53

0 0 0

0 0 (A+2u)e
-uvg 0 e

0 —uvé pes

e pes  —|(A+2uNE+u(vVE+VE) - 85

0 0 0 0 0
0 0 -AV2 0 e
0 -uv? 0 0 ue;
0 0 0 0 0
0O upe Aep 0 (A+u)dg
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(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)



O 0 0 0 0
i o R R\
Kis=5| 0 0 0 0 0 (144)
Vsl o -2 0o o0 Ly
0 pes 0 Aer (A+u)d
0 0 0 0 0
0 —uv? 0 0 ue;
RZZ_% 0 0 —(A+2u)vy O (A +2p)e (145)
Vsl o o0 0 —pVE pes
0 A+2 — (A +2u)VE+ p(VE+VR) — Y
Her  (A+2ue  pes [( +2u)Vg + (Vg +Vg) — T
00 O 0 0
) oo o 0 0
RKas=Z5| 0 0 0  —AVZ  Aes (146)
Vsl oo —uv2 o e
0 0 pes Aex (A+pu)ds
0 0 0 0 0
L 0 —uve 0 0 ue;
Kas=—| 0 O —HVs 0 He (147)
Vel o o (A+2u)V2 (A +2p)
0 e ues (A +2u)es — (4 +20)VZ + H(VZ+V3) - Y55 ]
with
K=Kl Ka=K Kaz =Kz (148)

5.2 The Matrix Ajn; and Application of No-Penetration Boundary Condition

Given the symmetrized Euler flux matrices (135)—(137), aiiign™ = (ny,np, ng) denote an outward normal vector
to some boundargQyy in the domain, one has that:

71 (u-n) ping + ;27 (u- n)Ul ping + 27 (u-njup
i pi(u- n)+2p|u1n1+ FUE(U-n) P Uz +Ung) + A urtz(u-n)
Ain = pI(U-n) +2pitznz + 27 U5(u-n)
symm.
(149)
ping + 27 (u-n)ug yil(u-n)[ W+ y1]
pl[U3n1+u1n3}+%u1U3(u~n) pi(3 u2+y|)n1+y%1[( WH1y) +1(y— 1]u1
yplU2U3(u n)+p|(usn2+uzn3) p|( u2+|y)n2+y%l[( wW1y) +1(y—1)] up
pi(u-n) +2piugnz + ;L5 u3(u-n) (3 u2+|y)p|n3+yil([ w1yl +1ly—1)u ( ~n)
L [FUt 1 ) (2y—1)] (u-n)
It is straight forward to apply the no-penetration boundargdition,u-n = 0 ondQy to (149):
0 ping piny ping 0
3 2piugny  pi(Uznm+uinp)  pifusny+ung] P (3U%+y1)
[Ain]"P = 2p1UoN; PI(UsNz +WoNg)  PI(5U2+1y) Ny (150)
2p1usnz (%u +1y) ping
0
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so that
0

) —pismy
AinV]"P= [ —pisnp (151)
—pisns
0

and
VT[AInV]"P = —ps(u-n)
=H uin; (152)
= aih;
Note that by the divergence theorem,

/(Hui),idQ:/ ai,idczz/ ainidS (153)
Q Q 0Qw

5.3 The Matricesli}’j n; and Application of No-Slip Boundary Condition

From (142)—(148), letting" = (ny,np, ng) denote the outward unit normal vector to some relevant bagyr@Qyy:

0
N (/\ + 2u)u1v1
Wai= HUu21 (154)
MUz 1
—(A+ 2#)%%1 - I-lx_:UZ,l - H%Us,l

0
A U2’2
KYV o= Hur 2 (155)
0
_“%U1,2 —A %Uz,z
0
A U3’3
RYVs= 0 (156)
u
Ve u 1,3/\ v,
“HZG U3 — A U3

So that

0
(A+2U)ur1+Auxo+Auss
KyjV | = HUp.1 + Huy (157)
v Huz 1+ H\llll,s
—(A +2u)\v7§u1’1— HU21— u%us,l— u\ﬁu1,2—A%U2,2— “%ul,S_A%US,S
meaning

VTK 1V = (A +21)up1Va + AUz Vo + AUz aVa + HUp 1V3 + [ 2V3 + Uz 1Va + U 3Vs
—(A +2u)Voug 1 — UV3Up 1 — UVaUs 1 — UVaU1 2 — AVaUp 2 — UVaU1 3 — AVaus 3 (158)
=0
(as asserted by Hughes in [9]). Moreover, applying the ipesinditionu = 0 on dQy, one has that

0
. 2uuy 1+ A (U + U224 Uz3)
[KyV ™= M (U21+ Up2) (159)
H(uz1+Uy3)
0
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Next:

It follows that

KoV j =

so that

0
UVs[—V5V3 1 + UVaVs 1]
AV5[—V5V2 1 4 VoVs 1]
0
—AV3[—VsVa 1 +VoVs 1] + HVo[VsVa 1 — V3V 1]
0
Hup 2
(A +2u)uz2
HUz2 v
—H%Ul,z - H%Us,z — (A +2u)Ru22
0
0

<V
23V3= Augs

v HU23 v
Ve, . A Ve
MUz —AGUs3

0
Huz 1+ Huy 2
Aupg+ (A +2U)uz2+Aus3
MUz 2+ HU2 3

AV _ Y _yVa A _y» _yVa _ V3
AGU11— HZUz1 — Ugtlz3 — AUz 3 — PPl — HgtUs2 — (A +21) G2

VTKZJV,J-

= HU2,1V2 + pu1 2Vo + AUy 1V3+ (A + 20Uz V3 + AUz 3Va + Uz oV + U2 3V
—AV3Uy 1 — UVoup 1 — UValp 3 — AVaUz 3 — UVouy 2 — UVaUs 2 — (A + 21 )V3Uz 2

=0

(also as Hughes asserts [9]). Then, applying the no-sligition, u = 0 on dQ:

Finally:

0
H(uz1+4U12)

KoV ™= | A(uri+Uz2+Us3)+2UUzo

H(uz2+U23)
0

0
HU3z1
V = — O
1V
VS3 A U1
—A %Ul,l - H%Us,l
0
0

5V o= MUz 2

A uz2
-A x—guz,z - Hx—gus,z
0
Hu13

Huz3
(A +2u)uz3

_“%Ul,S_ le—guz,s— (A +2I1):/L‘5‘U3,3
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(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)



so that

0
. H(Uz 1+ u13)
3V.i= H(Uz2+ Uz3)
y y v)\ (U1 + U2 + U3 3) \J/r 2uuz3 y '
A \Tgul,l - H\T§U3,1 —A \TgUZ,Z - N\Tgu&z — [J\Téul,g — N\Tgu2,3 — (A 4+ 2“)\7‘51u3’3

which confirms that

vT R‘éjv,,j = HU3,1V2 + [.1U1’3V2 + [JU3’2V3 + HU2,3V3 +A U1’1V4 +A U2,2V4 + ()\ + 2[.1)U3’3V4
—AVauy1 — UVaug 1 — AVl 2 — UV3Uz 2 — UVoUp 3 — UV3U2 3 — (A + 21)VaUs 3
=0

As for the application of the no-slip conditign = 0 on dQ):

(169)

(170)

(171)

(172)

0
5 p(uz1+uyg)
K5V )™= H(Uz2+Uz3)
A (U114 Uz 2+ U33) + 21Uz 3
0
Putting everything together, we obtain the matrix stemniiogn the application of the no-slip conditian= 0 on
(?QW:
0 0
(=VBVit11+VigaVs 1 — VeVai +VoVs )N VAY: n
~ : : : ' —V5Vii1i +VigiVs
[KijmV j]" = \% (=VsViy12+Vig1Vs2 —VsV3i +VaVsini | +A > |+1,\|/2 ARALE no
5 (—=VeVit13+VipaVsz— VsV +VaVs)ni 5 n3
0 0

An interesting observation is that componefs 4) of [Rij nV j|"sare
[KijmV {15 = [2uS+A0-ul]n

whereSis the strain tensor, with components given by

1
S = E(Ui,j +uji)

Recall that the general deformation law for a Newtonianaiscfluid is (see equation (11) in [9]):
Tij = 2uSj+ djA0-u
Moreover, the governing momentum equations have the form:
Du

PEZDTU

(173)

(174)

(175)

(176)

If we set% = O at the wall (i.e., assume the fluid is at rest at the wall), {i&16) implies thatd - 1;; = O at the wall,

or 7j; - n = 0 at the wall (by the divergence theorem). Then (175) imghes[2uS+ A0 ul]n = 0 at the wall.

5.4 The Matriceslzihj n; and Application of the Adiabatic-Wall Boundary Condition

Let 6 denote the absolute temperature. Then, from (45) in [9],

Knniv,j = Fihni =

[cNeoNeoNe)

Ke,ini
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Suppose the wall is adiabatic, i.6,;,n; = 0. Then

[Kiiniv j]29=0 (178)

5.5 Proof of Indefiniteness of Heat Flux Matrixlzihj with Harten’s Family of Homogeneous
Generalized Entropy Flux Functions

Suppose we wish to use a homogeneous entropy flux functiom Harten’s family of homogeneous generalized
entropy flux functions [6]:
H(s) = Ke@v (179)

wherea,K € R.

Without loss of generality, consider the 1D case. Refer }olfbparticular, we have:

P Ux
U:(pu>z(uz) (180)
E Us

p=(y-1) <E— %puz> (181)

It is shown in [5] that with the generalized entropy flux fupot(179), the entropy variables in terms of the primitive

variables are:
p* U3 + %L p Vl
v " = v (182)
P U1 V3

where

where )
=—(V1—-=z=% 183
= < -5 (183)
The inverse transformation is given by:
V3
U= p—p* Vo (184)
a— *
Vi — s Y
Assuming a calorically-perfect gas,
1
E=p (CVT - E”Z) (185)
whereT is the temperature (denotédn [9]) . Let us work this out in terms of the variablelsandV:
E = poT+ pTUZ
2
Us — Ui T 452
Vi— P = Vo T+3 56
—1y-1 1VZ 1 V. 186
\ 1V22 a-1(y. 1V22 _ Vae T
(1_§V_3)_T 1—2—3) = 3Cy
1 1V
o (Vl -3 V_23) = Vaey T
Rearranging,
1/vi 1V2
T (X_=-2 187
& a <V3 2V32> ( )



Now, the heat flux is given byg, = —kT;. Therefore, we must differentialewith respect to;:

T
Cvax X

VaVii—ViVai VAV, i—V2AVVs;
V2 n v34

(vll v.+( ) Vi) (188)

1 V2 V5 V1
( V3 V3 V2 V'

so that, in the notation of [9], the heat flux matrix is:

Q- QI}—\ Q=

0 0 0
~ K
Kh,=——1 0 O 0 189
11 ol 1 v vew (189)
Vi V3 V7

The matrix (189) is asymmetric, as Hughes asserts; butrtisgif is not a problem, since the stability proof (Theorem
3.3.1) simply requireK *1‘1 to be positive semi-definite. Note that, for ang R3:

XTKyx=x" | 21U |y (190)

o
o
|

V.

~ 1\ Symm K 0 0 _i
-_- 191
(kM) ol SR (191)

3 V3 V2

The eigenvalues of this matrix are:
o= o% Vi—Vat VP — 2VaVs + V2 +V3VZ 192
1, A2, A3y — 700\/ 2\/32

The first eigenvalue is 0, so we are good to go with that oneutébok atA;. It is non-negative i¥%; — V3 > 0.

V1—V3 ZP—; U3+%D—U1)
S, 2) (193)
=5 \y=1Pt+ PU v 1p P)
(1
=5 (3pU%+ 725 p— p)
Now, we desire-p + % p+ %pu2 > 0. Let us see what requirements@rthis constraint places:
P+ 2Lp+ipw? >0
>p(1-3?
Vflp ;p( 1 22u ) (194)
> —Pgu
a Z—Bpﬁuz(y—l)

The right-hand side of (194) is necessarily negative gitierphysicsp, p > 0, y > 1); therefore ifa > 0, thenA; > 0.
Harten has already placed this constraintoso in fact it is nothing new. Therefoe > 0 fora > 0.
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Let us examine the last eigenvallg For it to be non-negative, we must have:

ViV > \/Vf—2V1V3+2V32+V32V22
VZ-2ViVa+VZ > V2 2ViVa+ V2 + VAVZ (195)
0 > VZ+V3V2
0 > VZ1+V3)

The only way for (195) to hold is ¥/3 = 0. Let us see if this is possible:

p* p*
Vo= Pu =P, (196)
p p
But requiring this to be zero would amount to requiripg- 0, which is non-physical. Therefore the last eigenvalue
A3 will necessarily be negative, unfortunately. The heat fluatnw K 11 is not positive semi-definite with the choice
of Harten’s homogeneous generalized entropy flux functlgi®y.
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